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ABSTRACT

A model is developed which provides for the generation of the
approximate spectra of pulsed signals with arbitrary amplitude
and frequency modulation. Error bounds associated with the model are
developed providing an insight into performance accuracy. The concept
of using two approximate spectra to generate a more exact spectrum
by means of computationally trivial calculations is addressed.

The model is used to validate the feasibility of using frequency domain

discriminants in the signal classification process.
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I. INTRODUCTION

The classical radar pulse consists of a rectangular pulse modulating
a constant carrier frequency. This gives rise to the characteristic

[sin(x)]/x spectrum centered about the carrier frequency.

In practice, this idealized pulse is not realized since pulse
envelopes tend to be more trapezoidal than rectangular and since carrier
frequencies are not, de facto, constant. Frequency modulation (FM),
intentional or unintentional, may be a property of all radars. As an
example of this, oscillators may experience finite turn-on and shut-down
periods during which a transient frequency modulation can be introduced
onto the carrier. Figure 1 illustrates what a typical instantaneous
frequency of a "constant" carrier radar pulse might look like.

The question of how modulation affects the frequency spectrum is
one of interest in pulse analysis. Thus it is desirable to model the
3 amplitude spectrum of a pulse with arbitrary amplitude and frequency
modulation to provide a vehicle to study the effects of modulation on :

the amplitude spectrum.

One approach to this general modeling problem is to generate a digital .

representation of the pulse waveform and apply a Discrete Fourier Trans-

: form (DFT) algorithm to the data to generate the frequency domain

o R L

representation. This approach for the general case can be cumbersome
in generating the digital signal, satisfying the Nyquist criteria, and
trading-off between frequency resolution and transform size.

] ; An approach to addressing the amplitude spectrum of frequency modu-

ey e p———

lation waveforms is to view the problem in terms of the quasi-~stationary
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Figure 1 -~ Instantaneous Frequency Function

Associated with a Pulsed Signal
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principle. The fraction of time thet the instantaneous frequency for the
waveform spends in a particular frequency interval is the fraction of
power that belongs to the corresponding Fourier frequency interval.

This principle, however, is only validly applicable asymptotically for
large modulation indices. [1].

Holway and Mullen [1] have addressed a special case of FM spectra
generatioh. Using a Fourier Series approach and with the aid of Fresnel
integrals, a closed form expression has been developed for the line
spectrum for periodic frequency modulated signals in those cases when
the modulating function is trapezoidal. This model is flexible in that
the form of the trapezoidal modulation can be varied from square-wave
modulation at one extreme to saw-tooth modulation at the other.

As with the work of Holway and Mullen, the model developed in this
paper uses the Fresnel integral as one of its keystomes, but addresses
a broader scope of modulated signals. The Elemental Cell Model which
is to be addressed is designed to generate the approximate spectrum of
pulsed signals with arbitrary amplitude and frequency modulation. The
approach is to partition the amplitude envelope and instantaneous
frequency function associated with a signal into an arbitrary number of
"elemental cells” of arbitrary length. Across each elemental cell the
amplitude and frequency is linearly approximated so that the original
envelope and instantaneous frequency function have both been formed into
piecewise linear continuous functions. Each elemental cell has associated
with it a characteristic frequency spectrum which can be represented in
closed form. With phase continuity maintained between contiguous cells,
the individual elemental cell spectra can be summed to provide the

approximated spectrum of the original signal. This model provides a

13




flexible, easy to use tool for spectrum analysis.
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I1. ELEMENTAL CELL MODEL

A. DEVELOPMENT OF THE ELEMENTAL CELL MODEL FOR THE UNIT PULSE

In this section, the elemental cell model is developed for the umit

amplitude pulse waveform. The model provides a flexible, easily applied

method of generating approximated spectra for pulsed signals with arbitrary
frequency modulation. The approach of the model is to decompose pulse
waveforms into sequences of elemental (waveforms) cells, each of which
has a characteristic spectrum in closed analytic form.

Consider a unit pulse with an arbitrary frequency modulation as shown

in figure 2. The pulse waveform, p(t), can be expressed analytically as:

2
(11-1) plé) = cos {.hf:t s P(R) + Jfr‘;l;m(x) dx }
o

for T <€ < Tpo"t;’ where:

P l
4

Tpo = pulse starting time i
k.

5 = pulse carrier frequency l
P(To) = initial pulse carrier phase i
4

kf = constant of proportionality
m(x) = frequency modulating function
tp = pulse width

The instantaneous frequency function, fi(t), associated with this pulse is:

a2 fw) = £ + Kome) Tt<horls

135
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Figure 2 - Arbitrary Frequency Modulation Function, m(t)
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The spectrum of the pulse waveform can then be expressed as the

Fourier Transform of p(t) in equation {II-1):

(11-3) Pf) = f /:lt)e".wto(t

But since p(t) is nonzero only during the pulse duration:

pot Tp

(11-4) Pf) - Ib(t) e7 'wta/t
/3

The difficulty in evaluating this expression lies in the fact that p(t)
is a function of m(t). Since m(t), in general, is not representable in
analytic form, its integral and ultimate application to equation (II-4)
is mathematically untractable. An exact spectrum for a pulse with arbi-
trary frequency modulation can be generated using equations (II-1l) and
(1I-4) for only certain m(t). However, the concept of approximating m(t)
across the pulse holds promise for generating approximate spectra.

Since integration is a linear operation, the integral in equation
(1I-4) can be partitioned and rewritten as the sum of n integrals. This
is, in essense, the decomposition of the waveform, p(t), into n contiguous
cells. The linear additivity property of the Fourier transform then allows

equation (II-4) to be written as:

- tini .
(11-5) P(¥) - z [ P(t)e.’tht

0

where in the case at hand t;, = T,, and ¢t = T}o *tr

po
The spectrum, then, of the pulse waveform with arbitrary frequency

17
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modulation, p(t), can be thought of as being composed of the sum of the

spectra of elemental cells. If each elemental cell has a characteristic
spectrum associated with it, then P(f), the total pulse spectrum, can be
generated quite easily. However, the problem of dealing with the untrac-
table form of m(t) across the pulse and elemental cells still persists.
There are cases, however, in which the approximation of m(t) across an
elemental cell results in that cell having a spectrum that is representable
in closed analytic form. For example, consider the case where m(t) is
approximated by a constant value across an elemental cell. Let the left
end point of the cell be T,, the cell width be ?; the initial phase of
the cell be 96(72) and the radian center frequency of the cell be w .

The characteristic spectrum of this constant frequency unit cell, Z(f),

is of the form sin(x)/x and is written as:

. H(T,) . - H(Te) - ,wyt}
e (wew)t] _g? g1
aro 2= I {%75[/"’1 } o L ]

Thus the elemental cell's spectrum can be generated for any frequency
component as long as the four cell parameters (To,’l', W, and H1) )
are known.

A similar type of characteristic spectrum results if m(t) is linearly
approximated across an elemental cell. Consider the instantaneous fre-
quency function shown in figure 3. Let a unit cell be selected as shown
extending from '1‘° to T°+-TZ Then the Fourier Transform, Z(f), of this

elemental cell is:

= ',wt t
(11-7) Z(f) ‘j,-:ﬁ“)e d
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where pe(t) is that segment of p(t) (equation II-1l) contained within

the elemental cell under consideration. The instantaneous frequency of

this cell is:

o L) £ Kmit) Zetaly et

Let the instantaneous frequency (fi(t)) be linearly approximated (fi(t))

as shown in figure 3, then:
(II-9) )?-(t) = £ +f(t-73) 7;;t47.';f

where f is the frequency sweep rate,/ = (fz-fl)/f‘. Such linear FM is
called "chirp" modulation. Using equation (II-9), the approximated

instantaneous phase can be expressed as:

(1100  PR) = BT +°Z’rﬁ£ 4/9(::-7‘.)]& Tet<lpsf

(11-10b) Bty = (1) »Inf(t-T, +1'f(‘t-7;)4. T ate e T

This gives rise to the approxﬁafte form of the Fourier Transform of the

elemental cell.
o’t .
ar-y ) : fc’” [#(7) s 20 (t- o)+‘n/(t-'f.f]e'/wt¢!t
Te

By expressing the cosine as a sum of exponentials, completing the square

of the exponential arguments and letting

20
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[(t %) + (ﬁ-fgf)]

5 17
(11-12b) 2= ;G/T" [(t--;; )+ (f,;_f_')l

(II-12a)

equation (II-11l) reduces to:

a-13)  Z(f) = m;v e7(7)¢la + /7—' .(%E‘)Ji;

where:

2

(1I-14a) A, = A7) - fT, - f(f,'-f)
a-un) G, 2 P) S]] /g( £ of)

(11-15a)  Z/L = 7}? ( f -f)

(1I-15b)  Z/H = /.17[? + (%f)]
(11-15¢)  ZdL '—l//?(ﬁ +f)

(11-15d) 2a0 Y20\ T + (ﬁiﬁ)
* A

The integrals in equation (II-13) are the Fresnel integrals. They can
be evaluated with the use of tables, the Cornu spiral or the &-method

of Lanczos(2). Equation (II-13) can be written more compactly as:

ej”'[C(ll”) -C(z1L) +/ (s(zw) - 5(!"-?)1
ar-16) Z(f): }7‘7 {. 1"[0(11“) c(w-)q (J(uL)-S(EJII))}

21
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where the Fresnel integrals are given by:

z X
(1I-17a) Scx) = ‘L sm(g )dv
x
(1I-17b) Cy) = f cos(%‘f")dv
(-}

Thus the Fourier Transform of the elemental cell with a linear frequency
sweep can be obtained in a straight-forward manner by evaluating the
Fresnel integrals. The derivation provided assumes that the frequency
sweep within the elemental cell is positive. It can be shown that if
the sweep rate is negative the governing equation is similar to equation

(11-16),

arwy  Z6)- 75{,- {ei "IC(Z:M’)-C(M’) -f(st2k} -sc2)]

-4 [C(z.uﬁ-C(w5y'(5(m5-5(wf§]}
where the primed variables are now defined as:

(11-19a) p = PT,) - fT, 1rg(£-f)'z

4

a1y 3 = ¥(5) 120 fT, ';(ﬁff)

(11-20a) 21 = -/;[:‘}f]

(11-20b) 2/’ = /J/'[i‘ - Q',/_af)]

(11-20c) 2aL' = -//_7[}; ,f]




+f

(a-200) 2K : ¥ [z‘ - (f7)1

Thus as with the case of a constant frequency elemental cell, the spectrum
of a cell with a linear frequency sweep can be generated for any frequency
component given the cell parameters:f;To,iﬁ(To),fl, andJ/D .

In summary, an approach has been developed using an approximation to
arbitrary FM to generate an approximation to the pulse spectrum. The
instantaneous frequency, fi(t), is linearly approximated over an arbitrary
number of elemental cells of arbitrary duration. The Fourier transforms
of these elemental cells (of the constant frequency or chirp form) are
then coherently summed to produce an approximation to the original pulse
spectrum. Appendix A is a program listing for implementation of the
elemental cell model. Nomenclature and notation in the listing parallels
that of the development above. The program in the appendix treats the
unit pulse problem as a special case of the more general model developed

in section IV.

B. ILLUSTRATION OF THE ELEMENTAL CELL MODEL FOR THE UNIT PULSE.

It is desirable to model an FM pulse for which an exact spectrum can
be generated so that some insight into and assessment of the model per-
formance can be made. It is equally desirable to model a pulse in which
the instantaneous frequency profile is dynamic; i.e., constantly changing
across the pulse. Both of these objectives are achieved by selecting a
pulse which is subject to sinuscidal frequency modulation. Appendix B ad-

dresses the generation of spectra for pulses with sinusoidal FM.




e

Consider the case of a 5 microsecond pulse, which has an instanta-

neous frequency function, fi(t)’ given by:

(11-21) £ee) = f fé Fom cos[wpmt]

where

fc = carrier frequency = 30 MHz

kf = modulation index = 1.0

fn = modulating frequency = 200 kHz
This instantaneous frequency function is illustrated in figure 4. The
figure demonstrates, using two examples, the linearization and elemental
cell formation process. In case I, two element cells are used to generate
the spectrum while in Case II, six cells are used. Assume that the desired
frequency resolution is 25 kHz and that the primary interest rests in
the first three upper and lower spectr;l sidelobes. In generating the
spectrum then, 80 frequency components are required at 25 kHz intervals
starting at 29 MHz. It is worth noting that in the elemental cell model,
there is no requirement that the frequency or time intervals be of equal
size. Since the spectral components are generated by evaluating analytic
expressions for specific frequencies, the spectral values for any combi-
nation of frequencies can be produced.

Figure 5 displays the model-generated amplitude spectra for the cases
developed in figure 4. The solid curve represents the exact amplitude
spectrum developed according to Appendix B. It is not at all unexpected
that the 6 cell model provides a more accurate solution than the 2 cell
model. It is of interest, however, that the two cell model in itself

provides a good approximation to the exact spectrum. The question that

24
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% naturally arises is how well do the results of the model approximate

those of the actual spectrum?
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III. ERROR ANALYSIS APPLIED

TO THE ELEMENTAL CELL MODEL FOR THE

UNIT PULSE

A. ERROR BOUND

How accurate is the elemental cell model? How many cells are
required to achieve a given accuracy? More basically, how does the
model accuracy change as the number of elemental cells is increased
or decreased?

This section assesses the elemental cell model performance in terms
of error bounds. The establishment of these bounds is based on an
approach used by Gerald(3) and is developed in conjunction with
Schoenstadt (4).

In analyzing the errors associated with the elemental cell model

essentially two pulses are being compared:
(1) the actual pulse, p(t)
ﬂ

(1I1-1) Pit) = cas [+#)] et lperp

(2) the approximated pulse, P(t)

cos[ #)] Toettt Too+ 2p

(111-2) ,B(t)




‘o oae

amn

where:
Tpo = pulse start time
Tp = pulse duration

P(t)

>
¢Xt) = pulse approximated instantaneous

pulse instantaneous phase

phase based on the linearized instantaneous
frequency function
In analyzing the spectral error, the instantaneous frequency error
is first addressed. This forms the foundation for the phase error
analysis and ultimately the pulse and spectral error analysis.
Consider the instantaneous frequency function, fi(t), shown in
figure 6. For simplicity, n elemental cells of equal length, h, can

be used to generate the piecewise linear approximation, ?1(t), such that:
a A
(I111-3) fite) = g: J(,-',‘(f) [/((t'tn-') 4 (t 2]

A
where: &(t)- linear approximation of the instantaneous frequency
function across the kth cell.
Afx) = unit step function
If it is assumed that f;(t) is at least twice differentiable,
Gerald(3) shows that the error introduced by the linear approximation in

kth

the cell, ek(t), can be expressed as:

(11I-4) e (t) = £(t)- ;[Zn (¢) = :zl (t-te )t -2) 75:: (W
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where t,_j¢tét, and t p_3¢Ne ty.
In the actual pulse equation, however, the instantaneous frequency

error is reflected as an error in the instantaneous phase; namely,
ai-s)  P(t) - Het) = P0o) - AF.) ¢ JE’S‘C’)-}:"-’)]JS
Jo

Assume that 1?150), the initial phase, is known. Since §$(Tpo) can be
set arbitrarily, allow $(Tp°) to be equal to ¢(Tpo) causing the first
two terms on the right to vanish. Over the interval Tpo to '1‘po
for any t there existsaty= Tp°+kh such that t%t,. Selecting k to be

o8,

the smallest integer such that tfty, the phase error then at any time,

t, can be bounded from above in the following manner:
A o
(111-6) l#(t) -¢(t){ ¢ -Zfrf‘ﬁm-i-(s)us
T;
PO

This integral can be written as the sum of integrals over the k individual

cells:
y .
(I11-7) I?’(ﬂ-?(t)l* '2’7;‘[ l’,‘«}‘(s)-i](s)‘c‘s
J-l

where 91- Tpo + jh. By construction, the limits of integration are such
that the integrand in each term of the summation is given by equation

(I1I-4). Thus,

¢ '
(111-8) [¢(t) -fee) <7 ZL_ f ll G-Q:.)(:-ZJ-)J%,(Q(JS

! G




for 9‘-_, ‘IL‘ tf . By a change of variable, let Aw = s-tj-n

so that
o)+ 82 [lwerll gl

for o&ns |. The theorem of the mean for integrals states that

(II1-10) f f(x)g(x)clx = :F(\\) j gtt)dx

provided that g(x) does not change sign on the interval of integration
and that N\ is found in the interval of integration. By virtue of this

theorem, equation (III-9) can be written:
@ | B0 -He)| *M’; ‘ﬁ;(yl f \ww-Dldw

for osy‘.l . Equation (III-11) essentially expresses the bound on the
instantaneous phase error as the accumulation of errors over k individual
elemental cells. An upper bound can be set on the second derivative of
the instantaneous frequency in each cell such that for the jth cell the
N
= (Y . Y
bound is M.‘l max £‘(\)} for tl" cn 9 . Making use of this bound and

integrating equation (III-11) yields:
" ﬂﬁiz .
(111-12) ’¢(t) '#’(ﬂ‘ < 6 & / JI.
‘-l

More generally the second derivative can be bounded over the entire pulse

such that M = max Mj for § = 1,2,3,.....,k. It follows then that




equation (III-12) becomes:

3
(111-13) l¢(t) ; ?(t)/ . 1 kM

The original selection of k, however, required that Tpo+h(kr1)§téTpo+hk.
In other words, khit-Tp°+h. Making use of this and the fact that hn -{;,

equation (III-13) can be written:
2
(11I-14) /ﬁt)—;‘}(t)/ < 7%/21; [t - T +_§]

Thus an upper bound on the absolute phase error has beemn obtained as a
function of time. It now remains to relate this error to the actual

pulse error.
The absolute pulse error cas be formed using equations (III-1) and

(1III-2) as:

qan | pr-po)] = | coslte] - cosliel]

(11I-16) XP(t) - 'ﬁlt)‘ : ""25’” [ﬁl}ﬂtﬂw@%ﬂtﬂ
Since the sin(x) is less than or equal to one,

o SIN [¢-——(t) _&t)}
o

(111-17) l ple)- 'P‘(t)' <

st MM
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By making use of the fact thatlsin(x)l € |x|, the pulse error bound reduces

to:

| $tt) - H(t)]

oI5t )

With this knowledge of the pulse error, the bound on the spectral error

I~

(111-18) IP(t) -ﬁ(t) l

I~

amr19) | plt) - ﬁ(t)'

can be addressed. Writing the spectral error in terms of the pulse

e t 1
A - wt
(111-20) P(f) -PH) = f[’;(t) -’B(tﬂe’ dt
o

where P(f) and‘?(f) are the exact and approximated spectra respectively.

The absolute error can be written:
. 5 petlp R
(111-21) IP({)-P(f)ié j]r P(t)-ﬁ(t)\Jt f‘ﬂ#t)-#’(t)ut
e bo

Using the derived expression for the absolute phase error (equation

II11-14),

(111-22) ,P(f) P(f)’ -/J;(ch%‘ext '%)

18 (1+4)

Additionally, since the absolute value of a difference 1is greater than or

(111-23)

equal to the absolute value of the difference of the absolute values, the
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bound on the spectrum error using the cell model can be expressed as:

¥
o o] Il < 2251 2)

In general then, the accuracy of the elemental cell model depends on

the maximum value of the second derivative of the instantaneous
frequency function (a measure of how nonlinear the modulation is),

the pulse width and the number of elemental cells which subdivide the
pulse. It is significant to note that the model converges to the actual
spectrum inversely as the square of the number of cells.

While the error bound developed above assumed elemental cells of
equal length and bounded the second derivative of the instantaneous
frequency function across the entire pulse, a tighter bound, and one
which is more generally applicable to elemental cells of unequal length,
can be obtained by bounding the error contribution from each individual
cell and then summing these contributions over the total number of

elemental cells. The total spectrum error is given by
airsy  PE-PE) = [RH-BE) +[RH-RO) ...

where Pi(f) and ?1(f) are the true and approximated spectra respectively
of the ith elemental cell. So that the absolute spectrum error can be
bounded from above by summing over the absolute error associated with

each elemental cell.

awo  [po-Fof ¢ 3 |R)-RO)




R aeadnty

The absolute spectrum error associated with each elemental cell,
/ e( f‘)’?(f)l , remains to be developed. Consider the kth elemental
cell as depicted in figure 7. An expression analogous to equation
(II1-5) can be developed to describe the absolute instantaneous phase

error at some time, t, associated with the kth elemental cell,
t
(111-27) /ﬂt) - ﬁt)/ 4 I¢(6.) - ;(7;,,), + JWJI £.(5) -£ls)Us

where 7;.. -tézn'tk = 7;(304). In addressing the analogous equation
(I1I-5), the phase error at the beginning of the pulse was set equal

to zero since ;('1‘0) was arbitrarily set equal to 4’(10). In the general
case, in which successive elemental cells are being considered, $(T°k)

is not arbitrary. The phase difference at Ty must be viewed as a
cummulative error resulting from the approximations made in the succes-~
sive elemental cells occurring before T, . To develop this point, assume
as before that at the beginning of the pulse (that is the first elemental
cell) that ¢(n)-¢(n,.)=$(5,)-${r.). Using the above ecuations, the
phase error at the end of the first cell or, equivalently, at the begin-

ning of the second cell is:
" z.)

(111-28) /¢( %) -;( 7;;)/ £ ol I f;'(S)-.E(s) ’Js

Using the expression for the elemental cell instantaneous frequency error

developed in equation (III-4),
l'tl

%
(111-29) I HTe) - $(7;;)I £w ! [(t-TaXe -T2 @l de
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e, -

for T m"\‘ Tos +%,. Applying the mean value theorem of integrals,
bounding the second derivative of the instantaneous frequency across

the cell by its maximum value, M;, and integrating yields:

ws g s L

Thus the phase error at the beginning of the second cell is a function
of the quality of the approximation made in the first cell. A similar
development can be applied to generate the phase error at the end of

the second cell (beginning of the third cell); the absolute phase error

at the beginning of the third cell being:

Tt za.

au-an [#5)-Has)| ¢ [#5)-HE)| + 7 fle-md-Tea)|f ldt

The first term on the right is given by equation (III-30) and the integral

can be evaluated as above to yield:

< %(M,i‘,sm,tf)

(111-32) ! H(r,) - $(7o'3)

Extending this result, the absolute phase error at the beginning of the

kth cell can be expressed as:

-

(11I-33) I#&)'?g(&)l 2 f ’; /\1‘2}3

This result can be applied to equation (III-27) along with the expression

for the instantaneous frequency error in equation (III-4) to develop an

]

T TIGEY vy €y W .

T e
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expression for the absolute phase error associated with the kth cell

as a function of time:

. . =1 3 i
amw  [#e-#0lt f jZ Mg otk {'-th T -3&(#7.5[}

for Tokft*Tok-i-Z;(. This expression for the phase error can be used in
combination with equation (III-21) to form the upper bound on the

spectral error associated with the kth elemental cell.

Ton ¢ T

w0201 {(Zm) Mt 5330w

(III-36)

CIEPRARS

This represents then a bound on the local spectrum error associated with
the kth elemental cell. To obtain a bound on the global error across
the pulse, the local error of each cell can be summed over all of the

elemental cells, as in equation (III-26), so that

o [rviols 5 (55 07) -4

While this expression for the error bound is more unwieldy than that
developed in equation (III-24), it has provisions for addressing ele-
mental cells of non-uniform length. It also bounds the second derivative
of the instantaneous frequency f'mction on a cell by cell basis, yielding

a tighter spectral error bound. This tighter bound is, of course, at the
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expense of complexity of evaluation. The determination of the bound

on the second derivative of the instantaneous frequency function, M,

for equation (III-24) may be difficult enough. To further determine

the bounds Mj for all elemental cells for application to equation
(I11I-37) may be unacceptably tedious. A trade-off can be made to loosen
the error bound of equation (III-37) while preserving the provision for
addressing non-uniform elemental cell lengths by bounding the second
derivative of the instantaneous frequency function across the pulse

(l.e., M=max M} , §=1,2,......0)
(111-38) “P(fx-lﬁ(;)nf 27 {ﬂ_/\%t};g x 1%&}

Thus various approaches of different degrees of compexity can be
used to develop theoretical maximum error bounds on the spectrum error
associated with the elemental cell model. The choice of approach must
be based on problem complexity and a priori knowledge of the pulse
structure., The most important insight, however, that the maximum error
bound provides is that in applying the elemental cell model, this error

tends toward zero inversely as the square of the number (n) of cells,

B. EMPIRICAL ASSESSMENT

The objective of this section is to assess the actual elemental
cell model performance in the light of the error bounds developed in
section III-A. To achieve this a unit pulse with sinusoidal FM is

examined (as in Section II-B). The pulse is such that the carrier
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frequency, fc’ is 30 MHz; the modulating frequency, f;, is 200 kHz;
the modulation index, kg, is one; and the pulse duration,f, is five
microseconds. The exact spectrum of this pulse can be determined (see
Appendix B). Using the elemental cell model (Section II-B), approximate
spectra can be generated for cases where the number of elemental cells,
n, is 1,2,3,......... Each of these approximated spectra can then be
compared to the exact spectrum to determine the maximum spectrum error
calculated for n=1,2,3........ (For the purpose of this analysis,
frequency components between 29 MHz and 31 MHz are examined at 20 kHz
intervals.)

Since the unit pulse under consideration has an instantaneous

frequency function, fi(t), given by
(111-39) £ = £ + £ £y cos [wmt]

the maximum bound on the second derivative of the instantaneous fre-
quency function can be determined analytically. Since this is the "M"

of equation (III-24), that equation can be evaluated to yield the maximum
theoretical spectrum error bound as a function of n, the number of
elemental cells used to approximate the pulse.

It is also possible to generate a tighter theoretical bound on the
spectrum error by using equation (III-37) and determining from equation
(III-39) the bound on the second derivative of the instantaneous
frequency function across each individual cell.

Thus a set of three curves can be generated:

(1) The maximum theoretical spectrum error bound with




e o

fi"(t) bounded across the pulse (equation III-24) as

a function of n, the number of elemental cells;

(2) The maximum theoretical spectrum error bound with £;"(t)
bounded across each elemental cell (equation III-37)
as a function of n;

(3) The maximum calculated spectrum error as a function of n.

Figure 8 presents this set of curves for the pulse with sinusoidal FM
discussed above. The first theoretical bound (equation III-24) is
represented by the solid line; the second (equation III-37), by the
dashed line; and the calculated error, by the dotted line. The tightening
of the maximum theoretical error by bounding the second derivative of
the instantaneous frequency function across each elemental cell vice
across the pulse can be observed quantitatively by comparing the solid
and dashed curves. The maximum calculated error (dotted curve) is well
within the bounds set by equations (III-24) and (III-37). In fact, the
calculated error is generally an order of magnitude smaller than the
maximum error bound set by equation (III-24). Inspection of Figure 8
indicates that all three curves generally follow the characteristic
convergence, which goes inversely as the square of the number (n) of
elemental cells.

An important consideration in applying the elemental cell model is
the determination of the number of elemental cells to be used. Obviously,
the greater the number of cells, the closer the approximated spectrum is
to the exact spectrum, but at the cost of complexity and processing time.
The establishment of the inverse squared relationship between the number

of cells and the theoretical maximum error bound allows the determination
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of the minimum number of cells required as a function of the maximum
tolerable error. Let € be the maximum tolerable error, then equation

(I11-24) can be written as:

")
MG P
(111-40) '_R-;{ ( I+-§,) F
so that
41 ”3 > w"
(I11-41) ned 72 E

or for the case when the number of cells in large:

a
(I11-42) n>» %1"%1'

For example, in the case of the unit pulse with a 200 kHz sinusoidal
FM discussed above, the spectrum has a peak value on the order of
(4/2) 2.5x10"6, 1If the interest is primarily in the mainlobe, the
maximum tolerable error may be an order of magnitude less than the peak
value, so that €= 2,5x10-7. Then, knowing the value of M and ;,
equation (III-42) can be evaluated (or, equivalently Figure 8 could be
consulted) to determine that 15 cells (n = 14.3) are required to assure
that the maximum tolerable error is not exceeded. In this example,
n=15 provides considerably more accuracy than is required, but does
also provide the guarantee that the error will not be greater than the
accepted limit.

In practice, the second derivative, used freely above, may seldom be

available in analytic form. In those cases, a sizing of the problem can
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be made using the central difference approximation to the second deriv-
ative (3). Specifically, given a function g(t), as in figure 9, the

approximation to the second derivative at Ty ig:

(1II-43) 7,”= i-l-'—"l:’:._-:&'-

In the case of the test signal discussed abcve, the maximum of the
second derivative of the instantaneous frequency function across the
pulse is given by: M = 3.1583x1017. If the central difference
approximation of equation (III-43) is applied to the test pulse at
To = 2.5 microseconds for various values of h and the resulting
approximated derivatives applied to equation (III-42), the following
estimates of the numbers of cells required to produce an error no

worse than 2.5x10~7 are obtained:

for h = 1.2500 us; £4(T)) = 2.56x1017; n = 12.6
for h = 0.6250 as; £1(T,) = 3.00x10'7; n = 13.7

for h = 0.3125 se; £1(Ty) = 3.12x1017; n = 13.9

Thus this approximate approach to sizing the modeling problem is in

close agreement with the exact solution of n = 14.3.

The maximum error bounds developed in Section (III-A) provide a

[ valuable insight into the nature of the convergence of the elemental

cell model and a useful tool in determining the number of elemental

cells required to model a specific pulse.
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C. ASSESSMENT OF ERRORS ACROSS THE SPECTRUM

To this point, the error analysis has addressed the worst case,
maximum error bound, aspects of the elemental cell model and has
emphasized the lln2 convergence. But this maximum error is simply a
bound and does not address the error associated with individual fre-
quency components across the spectrum.

Consider the difference, E;, between the exact and the approximated

pulses in the time domain,

(I11-44) E, (8) = cos[#)] - cos[S(0)]

where ¢kt) is derived from the instantaneous frequency function, f,(t),
-

equation (II-2) and #Xt) is similarly derived from the linearly approx-

imated instantaneous frequency function, ?i(t). Then P(t) and &(t) are

related by:
(I11-45) B(t) = Plt) + E(t)
where €&(t) is the phase error as a function of time such that
(111-46) €(t) = Pre)-Hle) = [£00- f:00)dx
°
t
(I1I-47) é(t) = an [ ex)dx
°

where e(t) is the instantaneous frequency error as a function of time.
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1 Substituting equation (III-45) into (III-44) yields:
(ir-48) &) = cos[He) + ett)] - cos[Prel
(111-49) & @) = dsin (¢(t) + ‘_fi.*))sm fg:))

If €(t) is small, that is, for example, if &(t) = 0.5 (arbitrarily), )

then
2 élt)
(1I1-50) &) = €t) siv (4’(1&) " -:z-)
Additionally, 1f P)»EY), then
»
(111-51) E,(¢) = €(t)smw[P0)]
I1f €(t) has a Fourier Transform, €(f), and sin ;(t) has a Fourier Trans-

form, ?(f); then the error associated with E (t) in the frequency domain,

E¢(f), is given by the convolution of € (f) and B(f).

ar-s2) &)= esn[E®)] <= €(F)e DOE EL9)

While this expression is far from simple, it may provide an insight into

PO

the behavior of errors across the spectrum as the number of elemental
: cells is varied.
Consider, again, the test pulse of unit amplitude with sinusoidal FM.
If this pulse is modeled, using four elemental cells, the instanteneous

frequency error, e(t), and the instantaneous phase error, €(t), can be
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generated as in figure 10. Before applying the instantaneous phase
error function to equation (III-52), let us first examine the appli-
cability of the equation to the case at hand.

In arriving at equation (11I-51) and, ultimately, (III-52), two
assumptions were made: (1) that the instantaneous ptase error, € (t),
was small (that is that €(t)= sin(€(t)) and (2) that e_&t_)“ ﬁ(ﬁ) .
Figure 1C illustrates that assumption one is satisfied; i.e. €(t)& 0.5.

As for assumption (2), generally,ﬁg(t) behaves as #(t), so that

(111-53) &/f) =600 T -3 (0-‘/177)

for T in microseconds. Realizing that this function is based on modulo
two pi, there will be a few cases where 6_&;)g¢(t), but in ggneral over
the pulse At)» Eﬁr..) (See Figure 11).

Consider now the instantaneous phase error, €(t), in figure 10, in
the light of equation (III-52). The Fourier transform of €(t) is
esgsentially a sin(x)/x function centered about the carrier frequency,
in this case 200 kHz. In actuality, the spectrum is not quite this
straightforward, because of the relative proximity of carrier frequency
to the origin (£=0). The spectrum, as shown in figure 12, is, in general,
characterized by two main lobes of 400 kHz, sidelobes of 200 kliz, and
a spacing between the mainlobes on the order of 440 kHz.

The basic form of the spectrum, ?(f), generated by the instantaneous
frequency funccion,J%(t), is of the form shown in figure 13. E¢(f),
can be considered generally based on figures 12 and 13. 1t is expected
that Eg(f) would have a basic sin(x)/x form with two mainlobes being

about 400 kHz wide and symmetrically spaced 220 kHz above and below the
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peak frequency component of P(f). Further, it would be expected that a
negligible error would be associated with the peak value of ?(f) and
that the upper and lower sidelobes of Eg(f) would be about 200 kHz
wide. Figure 14 is helpful in addressing this qualitative analysis of
Ef(f). The solid line in the figure represents the exact spectrum of
a unit pulse with a 200 klz sinusoidal frequency modulation imposed
upon it. (i.e. The test signal discussed above). The additional
projections (x's, circles and triangles) represent the spectrum error,
Ef(f), associated with the modeling of the test signal using four,
eight and sixteen elemental cells, respectively. For the moment, the
case of four elemental cells will be addressed. Note that the mainlobes
of Eg(f) are on the order of 400 kHz wide and that these lobes are
centered fairly symmetrically about the peak value of P(f), being offset
by 200 to 250 kHz. As predicted, the upper sidelobes tend to decrease
in width to the order of 200 kHz. Thus, while equation (III-52) is
fairly unwieldy, a basic insight into the behavior of E¢(f) can be
obtained.

Consider now the two additional cases presented in figure 14 for
the cases when eight and sixteen cells are used. The instantaneous
frequency and phase error for an eight cell and a sixteen cell simulation
are shown as functions of time in figures 15 and 16, respectively. It
can be seen that in both cases the instantaneous phase error departs
slightly from that examined under the case n=4, but that the general form
of €(t) persists. In the frequency domain, this is reflected in the
similar forms of Ef(f) for n=4,8,16. Of particular interest is the
scaling associated with each of the three phase error functions. All

three instantaneous phase error functions are forms of a perturbed
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Figure 15 - Time Domain Error Functions for an Eight
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200 kHz waveform with varying amplitudes:

for four cells, the amplitude is .214 radians
for eight cells, the amplitude is .051 radians

for sixteen cells, the amplitude is .012 radians.

So that in increasing the number of cells from four to eight, the peak
phase error is reduced by a factor of 0.24. An increase in the number
of cells from eight to sixteen reduces the peak phase error by a factor
of 0.24, Considering then the convolution of equation (III-52) and
assuming that P(f) is essentially constant for n=4,8,16, it would be
expected that Eg¢(f) would be improved by about a factor of 0.24 for
increases in the number of elemental cells from four to eight and from
eight to sixteen. This is, in fact, the case generally portrayed in
figure 14. Typically, the improvement experienced in going from four
to eight cells and from eight to sixteen cells is on the order of a
0.20 to 0.25 reduction in the spectrum error. Again, this reduction
in spectrum error by a factor of 4 when the number of elemental cells
are doubled is characteristic of the 1/n2 convergence discussed in
section III-A. While some abberations occur in the convergence to the
exact spectrum (e.g. between 29.0 and 29.4 MHz), it is significant that
the convergence across the spectrum is generally uniform. Even in cases
of anomalies (29.0 to 29.4 MHz), the convergence tends to be uniform
as n increases.

In summary, by examining the phase error, it is possible to project
the basic form of the spectrum error, Ef (f) and, perhaps of more signif-

icance, to examine the behavior of the spectrum error as the number of

58




cells is varied. This provides an important insight into Ef(f) and

the convergence of P(£) to P(F).
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I1V. GENERALIZED ELEMENTAL CELL MODEL

A. DEVELOPMENT OF THE GENERALIZED ELEMENTAL CELL MODEL

The elemental cell model developed in Section II accommodates a
unit pulse with arbitrary frequency modulation. That model can be
generalized to accommodate arbitrary amplitude modulation. The modeling
approach is the same, i.e., the pulse is decomposed into elemental cells
and across each elemental cell the frequency and amplitude modulation
are linearly approximated. Thus, in the generalized model, both the
instantaneous frequency function and the pulse envelope are represented
by linear piecewise continuous functions.

Consider a pulse, s(t), with arbitrary amplitude modulation, v(t),

and arbitrary frequency modulation, m(t), then:

(Iv-1) s(t) = v(t)cos [P&Y) Tott ¢ Too+1p
where, as in Section II,

Xt
(1Iv-2a) Ple) = ¢(7;..) rdn '[ f: (0dz
po

and

(v-20)  S(#) = £+ Bmlt)

If V(f) 1s the Fourier transform of v(t), the amplitude spectrum S(f)




o e T T T - ——

P et o R O

of the pulse s(t) in equation (IV-1) is given by the convolution of

V(f) and the Fourier transform of cos HAe):

(IV-3) S(f)=Vf) ® f[;os i) = V(f) GP(f)

where P(f) is given by equation (II-3). Using the approach of equation
(I1-5), the spectrum, S(f), can be represented by the sum of the spectra
of elemental cells:

Lol

t
) .
(IV-4) S(f) - 2— f st)e? th ¢
¢t20 t‘

where to=Tpg and tq = Tp°+z;. The spectrum, Z(f), of any individual
element cell is given by
7;#8'

(1¥-5) 2(f) = f sit)é Wty

To
where 'I'o is the start time of the elemental cell and I is the pulse
duration of the elemental cell. Section II treated the special case
of equation (IV-5) when v(t) is equal to one across the elemental cell
and developed equations (II-6 and II-13) for the characteristic elemental
cell spectra for constant and chirp frequency cells. If the pulse
envelope, v(t), is not equal to one, but rather some constant across
the elemental cell, then equations (II-6 and II-13) still apply and
need only be modified by a scale factor. If, on the other hand, v(t)

is not constant across the cell, equations (II-6 and II-13) must be

modified to account for this non-constant behavior.

Consider the instantaneous frequency function, f4(t), and amplitude




modulation, v(t), depicted in Figure 17. In the figure, an elemental

cell extending from T, to Tb +0 is generated by linearly approximating
fi(t) and v(t) across the elemental cell. The linearized instantaneous
frequency function, ?i(t), has been discussed in great detail in Section

II. The linearized amplitude modulation, ¥(t), is given by:

(IV-6) v(it) - A+h(f‘7;) Jet# A%

where "A" is the initial cell amplitude and "h" is theslope of the
linearized envelope. This allows the element cell spectrum, Z(f), of

equation (IV-5) to be approximated by:
XA Tel -
avery  Z(5): Alcos[EHE Yt +h|(t-T)cos[F)S It

% s

The first integral is simply the problem addressed in Section II
modified by a multiplicative constant. The second integral adds a
degree of generality to the elemental cell model by accounting for the
fact that the amplitude modulation is not constant. In consonance with
the model development of Section II, there are twvo special cases of

equation (IV-7) that merit attention:

(1) h#o and the instantaneous frequency function is constant

across the cell; and
(2) h#o and the instantaneous frequency function is linear

across the cell.

In the first case, the approximated instantaneous phase function, i;(t)
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v(t)

h = (B-A)/T
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Figure 17 - Generation of a Generalized Elemental

Cell with (a) Frequency Modulation and

(b) Amplitude Modulation




is:
(v-8)  PlE) = M) » r Lt

for 7;5 ¢ 7, #Z° . By applying this function to equation (IV-7),
straightforward integration yields the following expression for the
characteristic spectrum of an elemental cell with linear amplitude

modulation and a constant carrier frequency:

av-9)  Z() = e,'[#;o)-wfol{# [/-J‘”"N)TJ

w‘-w
- (Ul:,'—mz [I - (1 -7 -u)t) e "M'“’)t]}

) ~jf¢(:)4wﬂ{¥é {I_e-j‘(w‘m)i]

Ut

’rﬁ‘w[’-('v!wf)evfwem>t)}

In the generalized elemental cell model, this expression is the analog
of equation (II~6).

In addressing the special case of equation (IV-7) in which both
the elemental cell amplitude and frequency are linearly swept, an
expression analogous to equation (II-13) will be developed. In this
case, the approximated instantaneous phase function, i;(t), is given by
equation (II-10b). The first integral of equation (IV-7) is simply a
constant, A, times an integral evaluated in Section (II-A); namely,
equation (II~13). Using Euler's equations, the second integral of

equation (IV-7) can be arranged as the sum of two integrals; the first
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is a function of (fl-f) while the second is a function of (f1+f).
Designating the first of these integrals by Il(f) and the second by

Iz(f), Il(f) can be written:
T+

f o) - wTo ’ 1 %)+ (f.‘fxt- c)
v ()« é‘-c’[«” w ]f(t-ii)e’[’y(t L)+dn Tlt
TO

By completing the square of the integrand's exponential argument, and
defining z) as in equation (11-12);/3,, as in equation (II-1l4); and

ZIL and Z1H as in equation (II-15), I,(f) can be written:
y I ({rza) ] f)
(wv-11) I, (f)= hed '{ ’f A -(f'_’l?)" (% }
r_q W;\Lz.e‘ Azl / llLej Jz’.

The first integral is directly integrable. The second is of the Fresnel
form. Defining the Fresnel integrals, C(x) and S(x), as in equation

(11-17), Il(f) can be written as:

-y(m)‘_ e,'f(zm)l

. jﬁl
(v-12) I, () = é%— {G’

- g(zu.)[C (2i#) -ClziL) + j’ﬁ(ilﬂ) - S(zu.))]}

A similiar analysis can be applied to the integral I,(f).

For simplicity, define the evaluated Fresnel integrals as:

(1v-13a) £ = C(aw) -C(a1) + J'B‘(zm) - S(zu.)]

s St




(Iv-13b) £, = C(22K) -C(23L) V’[S(?JL) -5(2am)]

With this definition and letting the limits of integration be defined
as in equation (II-15) and letting /31 and /32 be defined as in equation

(II-14), equation (IV-7) can be written in integrated form as:

(v-14)  Z({) = %L.{AF f(}‘ &.—J(ﬁi‘(zu.) d.‘l(zm)) ﬂ'(z“_)/:}}
st oA ) 7

This expression is the analog of equation (II-13) for the case where
arbitrary amplitude modulation is considered. This is apparent in the
terms that have been added that are a function of the envelope's slope.
Thus any pulse with an arbitrary amplitude and frequency modulation
can be modeled by expressing the pulse envelope and the instantaneous
frequency as linear piecewise continuous functions. These linearized
function are then segmented into a series of successive elemental cells

such that each cell can be classified as one of the following:

(1) 1linear frequency sweep; linear envelope
(2) 1linear frequency sweep; constant envelope
(3) constant frequency sweep; linear envelope

(4) constant frequency sweep; constant envelope

Associated with each of the four classes of elemental cells is a

characteristic spectrum, so that once the elemental cell's class has




been determined, its spectrum can be generated directly from cell

parameters. Finally, the total pulse spectrum is obtained by summing
over the spectra of all elemental cells.

The generalized elemental cell model is flexible and easy to use.
There is no requirement that the elemental cells be of uniform length.
In fact, judicious construction of the element cells allows for the
possibility of dynamic sampling. That is smaller elemental cells
(higher sampling rates) may be used during transient portions of
the pulse while larger cells (lower sampling rates) may be used during
more static portions of the pulse. Additionally frequency resolution
is not a function of the sampling rate and the number of samples used.
Arbitrary frequency resolution can be achieved since the model uses
an analytic approach to spectrum generation. For the same reason, an
arbitrary number of spectrum frequency component can be generated.

A program listing which implements the generalized elemental cell

model is provided in Appendix A.

B. ILLUSTRATION OF THE GENERALIZED ELEMENTAL CELL MODEL

To illustrate the application of the generalized model, consider as
in Section (II-B) the sinusoidally frequency modulated pulse but allow
the pulse envelope to also be sinusoidally shaped as shown in Figure 18.
The spectrum of this pulse is discussed in Appendix B. Let the pulse be
such that the carrier frequency, f, is 30 MHz; the frequency modulating
frequency, f;, 1s 200 kHz; the frequency modulation index, k¢, is one;

the amplitude modulating frequency is 100 kHz; and the pulse duration
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is five microseconds. (Assume, again, that a 25 kHz resolution is
desired and that the primary interest is in the first three upper
and lower spectral sidelobes.)

Figure 18 demonstrates the generation of elemental cells for this
pulse. Two cases are considered. 1In case I, two cells are used to
generate the spectrum; while, in case II, eight cells are used. Figure
19 displays the amplitude spectra generated by these two cases. The
solid line represents the exact spectrum, the development of which is
addressed in Appendix B. The general results are not unlike those
obtained for the unit pulse in Section (II-B). In the following section
it will be shown that the convergence of the generalized model parallels
that of the unit pulse model being inversely related to the square of the

number of elemental cells used in generating the spectrum.
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V. ERROR ANALYSIS (GENERALIZED MODEL)

A. ERROR BOUND

The methodology used in this error analysis parallels that used
in the development of equation (III~37) in Section III. The local
error bound associated with the kth elemental cell is generated and
then applied across the pulse to develop a maximum error bound on a
global basis.

For a pulse with arbitrary amplitude and frequency modulation, the
difference between the actual pulse waveform, s(t), and its approximated

form, 8(t) is given by:

(v-1) S(&)-5tt) = vit)cos (o) - o0 cos([ Pt

where ¢(t) and P(t) represent the exact and approximated instantaneous
phase functions respectively and V(t) and 3(:) represent the exact and
approximated pulse envelopes respectively. The pulse envelope expressions

are related by:

(v=2) v(t) = Ut) +,(¢)

where Vl(t) is the error that results from linearly approximating the

amplitude modulation. Making use of this relationship, the absolute




pulse error in the time domain can be bounded from above such that:
-3 [ste)-88)] ¢ |ilt)]]cos[et] ~cos[@te)]| + Ivel t)”m[ﬂtm

In the first term, the results of Section (III-A) can be used to bound
the absolute difference of cosines by the absolute difference of their
arguments. Equations (III-15) thru (III-18) are germane. In the

second term, use can be made of the fact that /00:(#/!/, so that:
(V-4) [;[t)-f(t)l ¢ /V(ﬂ”ﬂt)-‘f’/t), +/V¢(t)’

Since the intent is to extrapolate a local error to a global error,
consider the kth elemental cell starting at T,, and of duration,z.. 1f
’ﬂt) -3/ t’lg is the instantaneous absolute phase error associated with
the kP cell and Vék(t) is the error associated with the amplitude
modulation in the kth cell, the absolute pulse error associated with

the kth cell, l:(t)-?(tﬂ k» can be written using equation (IV-6)

w5 |ser-20)) & A, +he(t-T) || 10 - 0], ol®)]

where Ay is the initial pulse envelope amplitude at Toi and hy 1is the

slope of the pulse envelope across the cell. In a manner analogous to

equation (III-21), the local spectrum error associated with the kth

cell can be bound as follows:

Ot
(565)-50)l, ¢ [ {IAshe-m)l 00 - 960, ede)] e

If it is assumed that the amplitude modulation function, v(t),

(V-6)




is at least twice differentiable, then in the kth elemencal cell, the

linear approximation, ¥(t), results in error, Vex(t), given by:

v-7) Vgg(t) : }(’t 'En)(t “Tox - a)vu('\)

where T K2 \\t T +T and Toks ts Tok-i-fk. By bounding the second

derivative of the modulation function over the kth elemental cell,
¢ N7 Xt-T 1)
(v-8) Veg(t =3 “Jae N -Tox -tx

where Nk = max {V"(!\)} s To® N ¢ T,K.o-t.‘ . Applying this bound to
equation (V-6), using the expression for the absolute instantaneous
phase error developed in equation (III-34), and replacing the variable

t-Tox by w the spectrum error associated with the kP elemental cell

'I}Jw

can be bounded by:

v |sth-S¢| « £ f |A, ,h,‘w\{'zm‘,

Iw(w T ldw

This expression can be integrated to yield the local bound on the spectrum

error of the kth cell,

K/
o [s0-30, + (S g Y )
3

+7)‘Mxﬂt(A *07;" ) M&




Summing the local error bounds over all cellsprovides the global spectrum

error bound:

v fao-so) O E T

K=
(A“ +0.1 h.ﬁn) \ Aé;_l?_: }

This is a very general bound on the spectrum error, applicable to ele-
mental cells of uniform and nonuniform length, and, as such, is unwieldy.

To identify the characteristics of the convergence process, some simpli-

fications can be made resulting in increased clarity at the cost of =
broadening the bound. The expression (A.‘i- (h.fg /2)) is the pulse
amplitude at the midpoint of the kth cell. The expression (A, +0.7h )

is the pulse amplitude at a point seven tenths the width of the kth cell.
Both of these expressions can be upper bounded by the maximum pulse
amplitude, V. Additionally, the second derivatives of the modulating ?

functions can be bounded by their maximum value over the entire pulse, such

that:

(V-12a) Mz max {M‘} {63350

i (V-12b) N = max {N/} §° ha3.-yn

As a final simplification, let the elemental cells be of equal length,

f, where the total pulse width is Z}:nf. With these considerations,




equation. (V-11) reduces to:

(v-13) ‘S(f)-g(f)‘ 4 "ﬁgg;\_/ {,2 (K-—'—‘Q#-;Ll} NG

Realizing that 2;; (k-1) = nz-n, the =spectral error bound becomes:

3

y
P
v-14 - 4 M NG
(V-14) \5(;) S At | 1ant
Thus the generalized elemental cell model converges inversely as the

square of the number of cells used.

B. EMPIRICAL ASSESSMENT

In order to assess the peri.~r.ace of the generalized element
cell model in the light of the theoretical error bounds developed,
consider a pulse with sinusoidal amplitude and frequency modulation
as in Section (IV-B). The exact spectrum of this pulse is known
(Appendix B). Using the techniques of Section IV, the pulse can be
modeled using n elemental cells where n = 1,2,3,.... to produce
approximéte spectra. For each choice of n, the approximate and exact
spectrum can be compared to determine the maximum calculated spectrum
error experienced using the elemental cell model.

Since the instantaneous frequency function, fi(t) and the amplitude
modulation function, v(t), are known analytic;lly (Appendix B), equations

(V-11) and (V-14) can be evaluated to generate maximum theoretical error




bounds as a function of the number of elemental cells, n, used in

the modeling process. Thus a set of three curves can be generated:

L

(2)

€))

The maximum theoretical spectrum error bound as a
function of the number of elemental cellswith modulation
variables bounded across the pulse (equation V-14)

The maximum theoretical spectrum error bound as a
function of the number of elemental cells with
modulation variables bounded across elemental cells
(equation V-11)

The maximum calculated spectrum error as a function of

the number of elemental cells.

The three curves are presented in Figure 20. The solid curve

(equation V-14) and the dashed curve (equation V-11) display the

quantitative tightening of the error bound achieve through the

increased complexity of equation (V-11). The dotted curve represents

the calculated maximum error and is well within the established

theoretical bounds. In general, all curves follow the characteristic

one over n-squared coavergence.
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VI. EXTRAPOLATION

A, DEVELOPMENT

The concept of extrapolation to the limit (Richardson/Romberg
extrapolation) is attractive from the computational point of view
since a relatively simplistic calculation uses two inexact solutions
to generate a more exact solution. The technique involves some know-
ledge of the order of the error in the inexact solutions and some
assoclated assumptions. The desire is to apply this type of technique
to the elemental cell approach.

Consider the case of the unit amplitude pulse with arbitrary
frequency modulation and elemental cells of uniform length. The

maximum theoretical error bound for this case has been presented as:
f‘MZ'q
- - - 5 -/ P
(VIi-1) E-//P/ / ,/ '—/-j;g(,"n)

where again.%;is the pulsewidth, n is the number of elemental cells and

M is the maximum value of the second derivative of the instantaneous

frequency function over the pulse. Thus the approximate spectrum approaches

the exact spectrum roughly as the inverse of the number of cells squared.
Let Ifl\be the approximate spectrum produced when n, cells are

used to model a given pulse, then

Y
- P + MG 2.
v [p)-B) s 18R (142) e




wi-3) | PU)-Pp] e

The inequality can be removed by writing:
(VI-4) /IP({)-]/?(;)I ’ = Ye, 08¢
or by removing the absolute value signs:

(VI-5) |PF)] - |Pe)| =6 ottt

where cg and a&.are unknown and are, in general, functions of n and
frequency.
Similarly let]ﬁi{ be the approximate spectrum produced when n, cells

are used, then

(VI-6) [Ps)] - [Bep] = e 06cty s

Equations (VI-5) and (VI-6) are actually two equations in three unknowns:
P, % and &«y . To attach some physical significance to dj_ and o5
they can be thought as of the normalized errors for the two cases (nl
and n;) discussed above (normalized by the maximum error bound for a
specified number of cells). If these normalized errors (or errors
normalized to the maximum bound) are assumed to be equal, equations (VI-5)
and (VI-6) form two equations in two unknowns. The equating of these two
normalized errors in fact is an implicit assumption that for any given

frequency component for n; and n, the convergence of the approximated

2
spectrum to the exact spectrum parallels the convergence profile established




by the maximum theoretical error bound. In consonance with the
discussions of Section (III-C), it is expected that the validity of
this assumption is increased as n becomes larger and larger. Solving

then the set of simultaneous equations for lP|yie1ds:

(VI-7) 1P = Pl -e,/la‘.l
e, -e,
(VI-8) |PI = nd (n,+2) 1% - nd(n2) P

h;s (n+2)- n.’(anJ)

As is the case with extrapolation to the limit techniques, |P\in equation
(VI-8) is not truly an exact value since in reality ofy is not equal to

o .

B. ILLUSTRATION AND ASSESSMENT

In this section two detailed illustrations of the extrapolation
technique are presented along with a detailed analysis of the technique
performance. For the purposes of demonstration, a unit pulse with
sinusoidal frequency modulation (see Section II-B) is modeled.

Consider the case in which four (4) and then eight (8) elemental
cells are used to model the pulse. The two approximated spectra that
result using the techniques of Section II are shown in figures 21 and '
22. 1If the results of these two modeling efforts (ny=4;ny=8) are applied

to equation (VI-8), the extrapolated spectrum shown in figure 23 is
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Figure 21 - Amplitude Spectrum for a Unit Pulse with
Sinusoidal Frequency Modulation and

Approximated Spectrum Using Four(4) Cells
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Approximated Spectrum Using Eight(8) Cells
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produced. While a net improvement in the extrapolated spectrum can be
seen in the first lower sidelobe, certain null values such as the
amplitude associated with £=30.12 MHz show deterioration. To gain
a better insight into the extrapolation technique performance, figure
24 illustrates the amplitude spectrum error associated with the four
and eight cell models and that associated with the extrapolated spectrum.
In general, across the central region of the spectrum (f=29.4 MHz to
£=30.6 MHz), the error associated with the eight cell model is a factor
of four less than the corresponding error associated with the four cell
model. Additionally, in this central region, as the number of cells
is increased from four to eight, the convergence to the exact spectrum
is essentially at a uniform rate (i.e., the normalized errors 4y and
KA, are approximately equal). The error associated with the extrapolated
spectrum in this region lacks the uniformity seen in the two modeled
spectra, but in general provides a reduction in the spectrum error by
about a factor of four over the eight elemental cell model. On either
side of this central region, the performance of the extrapolation technique
is relatively poor. In the range from 29.0 MHz to 29.4 MHz, the inferior
performance is the result of the fact that the eight cell and four cell
models do not converge to the true spectrum at a uniform rate. In the
range from 30.6 MHz to 31.0 MHz the same problem exists; however, its
cause 1s more graphically evident in the misalignment of the spectrum
error sidelobes of the four cell and eight cell models.

Before assessing the performance of the extrapolation technique
further, consider a second example in which eight cells (n;) and
sixteen cells (“2) are used to generate an extrapolated spectrum. The

approximated spectra generated by the eight cell and the sixteen cell
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Cell Modeling with Four Cells and Eight Cells and
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models aPPear in figures 22 and 25 respectively. The resultant extra-
polated spectrum is not shown in a presentation comparable to figure
23 since the difference between the extrapolated spectrum and that

produced by the sixteen cell model is basically lost in the resolution

of the graphical presentation. Instead, the spectrum errors associlated

with an eight cell model, a sixteen cell model, and the extrapolated

spectrum (ny=8;n,=16) are shown in figure 26. Generally, across the
1 2

spectrum, the convergence of the sixteen cell model parallels that of

the eight cell model and exhibits the characteristic (l/nz) convergence. %
The extrapolated spectrum parallels the convergence of the elemental
cell models and further reduces the spectrum error by about a factor of
six or seven. In this second example, the use of an increased number of
elemental cells has reduced or eliminated some of the problems addressed 1
in the previous example (figure 24). In the frequency range 30.6 MHz to
31.0 MHz, the alignment of the spectrum error sidelobes for the eight

and the sixteen cell models has been greatly improved resulting in

significantly more accurate extrapolated spectrum values. In the

frequency range below 29.4 MHz, convergence of the two elemental cell

models is much more consistent and anomalous results occur only between
: 29 MHz and 29.2 MHz.

In those cases when the assumption of Section VI-A (i.e.¢¢, x oy )

f : holds, the extrapolated spectrum produced by using equation (VI-8) provides

a substantial increase in the accuracy of the approximated spectrum. In
the case of the first example (nl-a;nZ-S), this 1is seen in the factor of
four reduction in the spectrum error; in the second example (n1=8;n2-16),
a factor of six reduction in the spectrum error. The key point is that

these significant enhancements in spectrum accuracy are achieved by
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virtue of a trivial calculation. To form a basis for comparison and to
illustrate the power of these techniques, figure 27 presents an overlay
of the extrapolated spectrum error (nl-8;n2-16) discussed above and the
error associated with generating the spectrum with a 4K Discrete Fourier
Transform (DFT). While the nature of the error is different, there are
few cases in which the DFT spectrum provides better accuracy.

The potential power of the extrapolation technique is evident from
the discussions above. The existence of anomalies addressed in discussing
figures 24 and 26, however, needs further examination. Returning to the
first example of this section (n1=4;n2=8), of the 100 frequency components
between 29 MHz and 31 MHz examined, there are 32 cases in which the
extrapolated spectrum values are less accurate than the corresponding
spectrum values generated using the eight cell model. These 32 cases
fall into three distinct categories which shall be referred to as Type(l),

Type(2), and Type(3) errors:

(a) Type(l) Error. In six instances the spectrum values
generated using the eight cell model are less accurate
than the corresponding values generated using the four
cell model. Obviously, if {P,| is less exact than |P;},
the extrapolated value will, by equation (VI-8), be less
exact than IPZI.

(b) Type(2) Error. In 18 instances, the spectrum errors
associated with lPﬂ and | Py are oppositely signed. 1In
the extrapolation process, this results in the extrapolated
value being driven away from vice towards the true spectrum

value, This type of error results from the nature of the
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spectrum convergence which will be discussed below.

(c) Type(3) Error. In eight instances, a poor extrapolated
value results because of the difference in the rate of
convergence of the two approximated spectra to the true
spectrum. Specifically, the value of |P;} is considerably
different than |P{, while the value of lPd is a much
better approximation to IP}. While \P;| and ! P2l are not
oppositely signed, the relatively large difference between
the two causes, in essence, an "over-extrapolation" to a
less exact value.

Figure 28 presents a graphic illustration of how the three error types ;
are actually generated.

To gain an insight into the behavior of the three types of error

identified, a large number of cases are examined for various values
of n; and n,. As a general comment, it can be stated that the char- !
acteristics identified in the two examples presented at the beginning of

this section hold. When «,2 &, the extrapolation technique results in

a significant improvement in the accuracy of the approximated spectrum
and when problems occur or anomalies exist, they are generally limited
to the higher ordered sidelobes or local spectrum minima.

Table 1 is a matrix of the error types encountered for various

values of nj and n; in exercising the extrapolation technique against

the unit pulse with sinusoidal frequency modulation. Each block of the

] matrix is associated with a specific value of n; and njy and is divided
into quadrants which represent the number of Type(l) errors, Type(2)
errors and Type(3) errors as well as the total number of errors encountered.

The legend in the figure provides a key for identifying the various error
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types. For example, in the case discussed above (n;=4;n,=8), the appro-
priate block of the matrix identifies six Type(l) errors, 18 Type(2)
errors, 8 Type(3) errors, and 32 _otal errors. Examination of the matrix
yields some insights into the different types of errors and their behav-
ioral characteristics. By examining the Type(l) errors, it can be seen
that for a given nj), as n, increases, the number of Type(l) errors goes

to zero. This occurs since as nj increases all values of Py(f) will
ultimately be more accurate than the corresponding value of Pl(f) , thus
eliminating the source of the Type(l) error. It should be noted, however,
that as n, increases and the Type(l) errors diminish that they may reappear
as Type(2) or Type(3) errors. It is evident from the matrix that the number
of Type(2) errors is determined by the selection of n;. To some extent
this is also true for Type(3) errors, but there also tends to be a

slight decrease in the number of Type(3) errors as n, increases for a

fixed n;. This effect results from the fact that the extrapolated spectrum
is the weighted sum of the two approximate spectra, |Pl(f)l and IPZ(f),,
with the weights being determined by the selection of n; and nj;. As np
increases, the weight associated with |Py(£)| [the more exact of the two
approximate spectra] increases and tends to dominate the weighted sum,
diminishing the effect of |P1(f)| on the extrapolation process. In

actual applications, the relationship between n; and n, is critically
important, If these two values are too close together, the weighted sum

is biased towards IPl(f)’, typically the less accurate of the two appro-
ximate spectra. On the other hand, if ny is very much larger thamn nj,
'Pz(f)l may be so heavily weighted that the feasibility of using an
extrapolation approach becomes questionable. Figure 29 provides a quan-

titative insight into this problem by presenting the relative weighting
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of the spectra lPl(f)Iand ]Pz(f)l as a function of the ratio of n, to

ny.
The most important outcome of examining the matrix in Table 1 is

the reali{zation that to a large extent the successful application of

the extrapolation technique rests very heavily on the proper selection

of a value for nj. The selection of this value and the ultimate effect

that it has on the extrapolation process is driven by the manner in

which the approximate spectra converge to the true spectrum as the

number of elemental cells is varied. To gain an insight into the nature

of this convergence problem, figures 30 thru 33 present the convergence

profiles of various frequency components. The relative spectrum amplitude

[|Pn(f)|/lP(f)l] is plotted as a function of n, the number of elemental

cells used to generate the approximate spectrum, ‘Pn(f)‘, for specific

frequency components. Figure 30 represents a well-behaved frequency

component that converges nicely to the exact spectrum value. Figures

31 thru 33, however, display convergence profiles that may cause problems

in applying the extrapolation technique. Figure 31 illustrates how a

Type(l) error could occur with ny=4 and n2-8. In figure 32, it is easy

to see how a Type(2) error could be generated if n; were less than eight.
Figure 33 presents a case in which a Type(3) error could result if ny

were four and n, were eight. In general all frequency components converge
nicely to the exact spectrum value if the number of elemental cells is
large enough. The problem in dealing with the extrapolation technique

is to select n; and ny such that the initial transients in the convergence
profiles do not impact on the extrapolation technique. Figures 30 thru

33 represent three different types of convergence profilesencountered in

examining the unit pulse with sinusoidal frequency modulation. In
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congonance with the discussions of the two examples presented at the

beginning of this section, the convergence profile displayed in Figure
30 is representative of those frequency components within the mainlobe
and major sidelobes. As frequency components farther above or below
the mainlobe are examined, the convergence profile becomes more complex.
The extrapolation technique has been observed to provide significant
increases in the accuracy of spectrum estimates at a minimal cost in
computation. The use of this technique, however, requires a judicious

selection of ny.
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VII. APPLICATION

The model developed in the previous sections can be a useful tool in
the development and implementation of signal classification algorithms
based on frequency domain analysis. The modulation that is present on
pulsed signals may well be a useful discriminant in the classification
process. This being the case the treatment of this discriminant in the
frequency domain has the potential of being less susceptible to noise
since the transformation is a smoothing process.

To address the discriminant selection in the frequency domain, con-
sider the chirp radar pulse. As the chirp rate is increased or decreased
for a given pulse duration, certain characteristic effects occur: (1)
the spectrum is shifted in proportion to the chirp rate and (2) the side-
lobe amplitudes change relative to the mainlobe as a function of chirp
rate. Knowledge of the form of the spectrum provides an insight into the
nature of the chirp pulse. In more general cases in which the frequency
modulation may be more complex, does knowledge of the spectrum form pro-
vide useful information to the classification process?

To examine this question, let the discriminants that define the
spectrum form do so in terms of the sidelobe structure relative to the
mainlobe. This can be easily accomplished bty choosing two types of
discriminants: (1) the relative amplitudes of the sidelobe local maxima
(relative to the maximum spectrum amplitude) and (2) the frequency dif-
ferences between the sidelobe maxima and the center frequency of the
mainlobe. The selection of these parameters establish the form of the
spectrunm.

To actually assess the feasibility of employing sidelobe structure

in the classification process requires that the impact of the modulation
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on the spectrum be understood. To gain an insight into this effect, con-
sider a unit pulse with an instantaneous frequency function as shown in
figure 34. Notethat the initial portion of the pulse (0.2 4s) is subject
to a symmetrical triangular modulation of magnitude gFM. To investigate
the impact of the modulation on the frequency domain, the values of the
two discriminants (relative amplitude and relative frequency) are deter-
mined for the first three upper and lower sidelobes for a variety of
pulses as AFM varies from zero to 5 MHz. Figure 35 displays the relative
amplitudes of the upper sidelobe maxima as a function of 4FM. For exam—
ple, the first sidelobe has a relative maxima of 0.3 when the magnitude
of the triangular modulation is aFM = 2.0 MHz. All three sidelobe maxima
have the potential of functioning as discriminants since they are single
valued and monotonically increasing. For example, the relative amplitude
of the sidelobe for 4FM = 2.0 MHz is easily distinguished from that for
AFM = 2,5 MHz for all three sidelobes. Figure 36 is a similar presenta-
tion for the lower sidelobe maxima. For a pulse with initial triangular
modulation, the lower sidelobes are inferior to the upper sidelobeé as
discriminants. This is due to the fact that the relative amplitudes
extend over a much more confined range of values and that, in the case of
the second sidelobe, points exist on the curve that are multi-valued.
From figure 36 it appears that the first sidelobe disappears when 4FM =
2.5 MHz. In fact, as the modulation magnitude increases past 2.0 MHz,
the first and second sidelobes merge to form one and are arbitrarily
associated with the second sidelobe. The inferior performance of the
lower sidelobes in this example should not be cause to disregard them as
discriminants, since by changing the polarity and location of the trian-

gular modulation the relative merits of the upper and lower sidelobes
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would be reversed. The relative amplitude of the sidelobe maxima display
the characteristics desired of a discriminant for classification pur-
poses.

Figure 37 displays the relative frequency of the upper sidelobe
maxima as a function of 4FM. In order to accomodate all three sidelobe
profiles on the same scale, fo is selected as the normalization factor.
It represents the nominal frequency at which the sidelobe maxima would
occur for the case of a constant frequency pulse. If T is the pulse
duration, the sin(x)/x spectrum will have local maxima at the following
approximate spacings from the center of the mainlobe: :ﬁ/Zf, 3;/222 :7/27:
s+ 80 that f,, the location of the nth sidelobe peak relative to
the center frequency, is +(n + 1/2)/f. Thus as each of the three side-
lobes is considered, the value of f, changes. The range of values over
which the relative frequencies extend is fairly small especially for 4FM
less than 2.0 MHz. Figure 38 presents the relative frequency of the
lower sidelobe maxima. The first sidelobe provides no useful informa-
tion. The second and third sidelobes however are quite robust due in
large part to the fact that the first and second sidelobes merge at about
aFM = 2.0 MHz. There appears some potential for relative frequency as a
discriminant but its power does not appear comparable to that of relative
amplitude.

To gain another feel for discriminant power consider a pulse as in
figure 34 but with a triangular modulation that is not symmetrical. Such
an instantaneous frequency profile is shown in figure 39. Again, the
relative amplitude and relative frequency of the local sidelobe maxima
can be examined. Figure 40 displays the relative amplitude for the upper

sidelobe maxima. The results from figure 35 (symmetrical modulation) are
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plotted as solid lines for comparison. These discriminants appear to
work well in distinguishing between these similar pulses especially for
AFM greater than 2.5 MHz. A similar presentation for the lower sidelobe
relative amplitudes appears in figure 41. The performance of the lower
sidelobe discriminants parallels that of the upper sidelobes for these
two similar pulses. Figures 42 and 43 present the relative frequency of
the upper and lower sidelobes, respectively, as a function of AFM.
Except for large values of 4FM in the case of the second and third lower
sidelobes, the overall performance of relative frequency in distin-
guishing between these two signals is marginal.

In summary, f;equency domain techniques are reasonable for pﬁlse
classification purposes. The use of sidelobe structure in the form of
relative amplitude and relative frequency as a classification discrimi-
nant is a valid approach to the problem with the former possessing the
greater potential for success.

This type of analysis lends itself very well to the elemental cell
model. Waveforms are easily constructed and implemented and local maxima

can be readily identified to arbitrary precision.
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VIII. CONCLUSIONS AND RECOMMENDATIONS

A flexible, easy to use tool for modeling the spectra of pulse
signals with arbitrary amplitude and frequency modulation has been
developed along with the appropriate error bounds. When properly
‘implemented, accuracy comparable to that of an FFT is achievable.

The technique developed is not universally superior to the FFT;
efficiency of one over the other is a function of specific applications.
Computational spded can be an advantage in the elemental cell method
in those cases where large FFT's are required relative to the product
of the number of elemental cells (n) and the number of frequency ;
components required (m).

The feasibility of using frequency domain discriminants in the
signal classification process has been demonstrated.

There are a number of areas for further investigation and refinement.
Appendix D addresses the comparison of the FFT and the elemental cell

technique in terms of computational speed. Since most of the studies

during this effort were focused on precision vice speed and since the

execution time studies were conducted without modification to the basic

subroutines (Appendix A), significant improvements can be made in the
L , efficiency of the elemental cell subroutines. Several specific areas
i 5 for improvement are:
(1) the conversion of double precision based routines to
single precision. Preliminary investigation in this area has indicated

that this can be accomplished with little degradation in model

performance.




(e

(2) the elimination of "left-hand” spectrum computations. The

existing subroutines calculate both the “"left-hand” and "right-hand"
spectrum contributions to each frequency component. Under the proper
conditions, the former can be eliminated without performance degradation.

(3) the streamlining of certain aspects of the overall computation.
For example, the technique of James (5), discussed in Appendix C, for
Fresnel integral evaluation should be assessed for use in place of the
existing technique.

The time required to generate a spectrum using the elemental cell
technique 1s a function of the number of cells used (n) and the number of
frequency components required (m). The time required increases as the
product of m and n. Since the calculation of each elemental cell spectra
is independent of all other elemental cell spectra, individual elemental
cell spectra can be calculated in parallel and then coherently summed.
Investigation of the implementation of parallel processing arrays should
be initiated. Under such an implementation, the computation time
required for spectrum generation would be proportional to m vice m x n.

While the feasibility of using spectrum discriminants in signal
classification has been established, further examination is required:

(1) the approach should be assessed against a nolsy environment;

(2) the approach should be compared to other techniques on simulated
and real data.

Further work might well be done in applying the elemental cell

concept with different basis functions that lend themselves to certain

classes of signals.
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APPENDIX B

SPECTRA OF SINUSOIDALLY MODULATED PULSES

Consider a pulse, s(t), which may be both amplitude and frequency

modulated so that over the duration of the pulse:

(3-1) s(t) = v(t)ceos (¢@)]

where v(t) represents the amplitude modulation and 9t), the instanta-
neous phase, accounts for the frequency modulation. An expression for
the frequency spectra of two specific cases of equation (B-1l) is
developed. In CASE A, the pulse envelope is simply represented by a
unit pulse (i.e., v(t)=l over the pulse width). In CASE B, the pulse
envelope is allowed to vary sinusoidally. In both CASES A and B, however,
the carrier frequency experiences a sinusoidal frequency modulation.
Consider a sinusoidal instantaneous frequency function as shown in
figure (B-1) with f, being the carrier frequency; f, the modulating

frequency and kg, the modulation index. The instantaneous frequency

function, fi(t), is represented by:
(B-2) £08) = f v # fuces Lot

The instantaneous phese can then be written as:

(B-3) ¢(t) s wt s ‘-Jlﬂ[w”t] +P(o)




£,(t)
f
¢ AN A L
fc_kffm"

Figure B-l1 ~ Instantaneous Frequency of a Sinusoidally

Modulated Pulse

v(t)
100-
0.5~
4
1 1 ) I i

_T}- ' Time
fm

Figure B-2 - Envelope of a Sinusoidally Shaped Pulse
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where $(o) 1is the initiai carrier phase at time zero. For the purposes

of this analysis, the interest is in the cosine of the phase function

)
(B-4) Cos[d’(t)] 2 c’os[w,_t + ‘;sm (w,,,.t) + ‘?(o)]

The right hand side of équation (B-4) can be expanded as an infinite

series of sinusoidal functions weighted by Bessel functions (6).

(B-3) cos[He)] = I, (£,) eos [wr.t + $to)]
+ Z (-/)‘J;'(ﬂ;) {COS [(we.-f%)t + S‘(o)]

(s

.,.(-;)"cos [((4._9 i Yt 4 ¢(o}]}

This expression represents the sinusoidal FM associated with the pulse

for which spectra are to be generated for CASES A and B below.

CASE A: SINUSOIDAL FM

The frequency spectrum for the unit pulse of durationfﬁith sinusoidal

FM can be expressed as:

' ot
(B-6) Z) = [ Cos ¢(t)]é1 c/t




Using the results of equation (B-5) and integrating, produces:

wn 20 - BRI gl ] el LSS

PRy
¢()
1§ UL Jerturrt ]
LT N e
L-l
-1«0) [_{(%‘lwm"")" ‘1
W= W ¥
ivl g Pl0)
el [e,(wmw»-rw)ﬁ,]
b)cfle*w

This frequency representation is essentially the convolution of the
spectrum of a sinusoidally modulated carrier with the spectrum of a

unit pulse. That is a sine(x)/x spectrum convolved with an infinite
sequence of delta functions weighted by the Bessel functions, Jj(kg).
Thus the spectrum is a function of the modulation index kf. If kf is
small, the first few delta functions account for most of the power in
the carrier(6). For exam%le, if kf-l, then JO’ Jl, and Jz account for

) 98% of the signal power. In using equation (B-7) to generate a spectrum

for CASE A, the first twenty terms of the series are evaluated. A program

listing which evaluates equation (B-7) appears at the rear of the Appendix

and is titled "SUBROUTINE SINE".




B. CASE B: SINUSOIDAL AM AND FM

Consider now CASE B in which the amplitude modulation is allowed to
assume a sinusoidal form as shown in figure B-2. The frequency
modulation is unchanged and generates the cos @(t) term listed in

equation (B-5). Allow the amplitude modulation to be expressed as:

(8~8) vit) = sin[27ht]

where fa = 1/2‘2‘ . Thus the pulse waveform equation can now be written:

(B-9) slt)= SIN [w,t] Cos [‘P[e)]

With the aid of equation (B-4) and trigonometric identities, the pulse

equation can pe expressed as:

(B-10) sl¢t) = ‘J:é.l){-fw[(aw uu)t—.] "S’”[(wc'%)t]}
(-

+ i /)‘. J.:_gfi) {J/A)[(wc-z'wmow..)t_]

-

5ot [ e i - we) t]

#(-1) M [( We + & Wpm m.)t]
f('/)‘w Sh\/[(u.gu' Wpn -q,)t,]

By taking the Fourier transform of the pulse, the frequency spectrum

132




for CASE B can be expressed as:

< of 4G+ Ne-adt , gl ool
ey 20 - BR{G( (eic‘“ e -)0(_,)..(.,-1% N _Q

we + (1) g - w0 w v+ (- Vg tw

= ‘ 4 = Tewpme (1) %y -0
* Z (-1 f({() {Z [(")ml(ej{“’c (-1 wig Ji:,

; IV sran
ket e =3 Wam ¢ (1) we, -w

(it

£

- 3
We= Iy +(~1) g, +w

*(_‘)L'N'.*I (e{[ﬂ'.“'wm *(-')‘w‘-u]{l)

N &
W ¥l Wont (.") Uiy - >

( )K&i#l<a.[w¢’ iwﬂﬂ#('l)‘a’g *sz‘ )
+(-1 -

. "
Wetl Wom +(-1) wo +w

Again as with CASE A, the first twenty terms of the series are evaluated
in establishing a reference. A program listing for CASE B appears at

the rear of the appendix and is titled "SUBROUTINE ASINE".
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APPENDIX C

FRESNEL INTEGRALS

The Fresnel integral, important in the theory of diffraction, can

be written as:
) 4 /n, 2
(c-1) C(x) -/'5(1) = fo e"(é)vclv

Plotting this integral in the complex plane yields a curve known as
Cornu's spiral (figure C-1). The positive values of x appear in the
first quadrant and the negative values in the third. A vector drawn from
the origin to any point on the curve represents in both phase and
magnitude the value of the integral in equation (C-1). (The phase of the
vector is the negative of the phase of the integral.) Note from the
Cornu spiral that as x goes to infinity, C(x) and S(x) both converge
to one half.(7)

The integral in equation (C-1) can be expressed in terms of a series

expansion as:

e (_,)"(fl/a_f" Ynel
(C-2a) Ccx) = Z @n !(‘In")%

n20
! 3
-] (.’)” ”/ f"' zqﬁ'
(C-2b) Scx) = ;o Gnolgl;‘/ﬂ*»

The fact that the Fresnel integral is not expressible in closdd form
means that in application approximations to equation (C-1) must be
employed. One such approach has been developed by Boersma(2)

in which equation (C-1) is written with a change of variable (w-gvz)
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so that:

."w

2
(c-3) (c2) -1'5(9) z f e dw

LW

Boersma's technique makes use of the following approximations:

(C-4a) C(E)-J'f(é) = e'/é;/;,?z;(a,ﬂjbn)(%)“ ocztYy
(c-4) C(Z)-/.j(” : L,:Zdlf e.jz EZI_?Z (Cn*Jdn)(%)n zZz4

where the coefficients a,, b,, c, and dj, are derived by the T-method

of Lanczos and are provided in (2). The maximum error associated with

* this approach is 1.6x10‘9. This technique of evaluating the Fresnel

integrals has been employed in the subroutine CS listed in Appendix A.

Other techniques and approximations are also available to evaluate
the Fresnel integrals; one of the more recent being presented by
James(S). James' approach is unique in that it employs one concise
approximate expression for all real values of the argument. The

technique is implementable on a pocket calculator and provides a

maximum amplitude error of eight per cent.
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APPENDIX D

COMPARISON OF FFT AND ELEMENTAL CELL EFFICIENCY

Given a sequence x(n) where n = 1,2,.....(N-1), the Fourier
coefficients associated with the sequence can be represented by the

discrete Fourier transform (DFT):

=/ An
(0>-1) X(#) = i 2(n) Wy otReN-I

- ("1.3)

would require N2 operations where the term "operation" is taken to

where W, A straightforward calculation using equation (D-~1)
mean a complex multiplication followed by a complex addition. More
efficient methods are available for evaluating equation (D-1) which
require considerably fewer than N2 operations. Cooley and Tukey(8)

developed a technique which has lead to a class of algorithms known

as Fast Fourier Transforms (FFI's) which provided for the evaluation
of equation (D-1) in less than 2N1032N operations.

While the number of operations required is frequently used in DFT
and FFT analysis as a measure of computational complexity or efficiency,
it cannot easily be applied to the elemental cell model to establish
a common base for comparison. The actual time required for an FFT
or elemencél cell calculation can be compared.

Using the subroutine HARM (IBM Scientific Subroutine Library),
which is based on the algorithm of Cooley and Tukey(8), the Fourier
transforms of 50 signals were generated to determine the average
execution time of an N-point transform where N = 512, 1024, etc.

for each set of 50 signals,
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In similar fashion, the elemental cell spectra were generated for
each of the four classes of elemental cells using one hundred frequency
components. Table (D-1) lists the results of this analysis. In the
cage of the FFT, as the size of the transform is doubled, the
time required for computation increases by approximately a factor of

two. This is in keeping with what would be predicted by the measure

of complexity discussed above. In the case of the elemental cell model,

the time required for computation increases with the sophistication
of the class of elemental cell.

In application, the time required to implement an FFT is a function
of the transform size(N), which is in turn a function of the problem
being addressed. The time required to implement the elemental cell-
model, on the other hand, is not only a function of the problem
being addressed but also the nature of the elemental cells employed,
the number of cells used and the number of frequency components to
be generated. For example, the average execution time for an
elemental cell model composed of ten constant amplitude cells with
linear FM for which twenty spectral components are desired is
(10 x 20 x 6.10msec =) 1.22 seconds.

A graphical comparison of the execution times of the two
techniques appears in figure (D-1), in which execution time is
plotted as a function of the product of the number of elemental
cells (n) and the number of frequency components required (m).
Nothing can be said unequivocally about the computational efficiency
of the elemental cell model vis-a-vis the FFT approach. Under
certain circumstances, when the transform size is large (e.g. greater

than 2K) and the product of m and n is small (e.g. less than 200)

SR L W e v smevmeaRe et nen ®
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AVERAGE TIME TO EVALUATE AN N-POINT FFT

N TIME

512 0.22 sec
1024 0,47 sec
2048 0.88 sec
4096 1,81 sec
8192 4,01 sec

AVERAGE TIME TO EVALUATE AN ELEMENTAL CELL FOR ONE FREQUENCY

CLASS OF CELL TIME

CONSTANT AM CONSTANT ™M  3.72 msec
LINEAR AM CONSTANT FM  5.55 msec
CONSTANT AM LINEAR FM 6.10 msec
LINEAR AM LINEAR FM  8.85 msec

Table D-1 - Average Times for FFT and Elemental Cell

Calculations
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TIME(sec] __ . -
——— ELEMENTAL CELL (d)
(a) constant AM and FM
(b) linear AM; constant FM
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n = number of cells
m = number of frequency components desired

Figure D-1 - FFT and Elemental Cell Execution Times




speed can be obtained using the cell model at the cost of discriminating
the signal of interest.

It should be noted that in this analysis the subroutines used to
generate the elemental cell spectra are those listed in Appendix A
and that no attempt at time optimization has been made. In fact,

at the cost of efficiency, precision has been stressed. It is expected

that by modifying the existing subroutines to handle only the ''right
hand" spectrum and to function in single vice double precision that the

execution time could be reduced by nearly a factor of four.
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